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Abstract: The increasing prevalence of myopia has attracted global attention recently. Linear 

lesions including lacquer cracks and myopic stretch lines are the main signs in high myopia 

retinas, and can be revealed by indocyanine green angiography (ICGA). Automatic linear 

lesion segmentation in ICGA images can help doctor diagnose and analyze high myopia 

quantitatively. To achieve accurate segmentation of linear lesions, an improved conditional 

generative adversarial network (cGAN) based method is proposed. A new partial densely 

connected network is adopted as the generator of cGAN to encourage the reuse of features 

and make the network time-saving. Dice loss and weighted binary cross-entropy loss are 

added to solve the data imbalance problem. Experiments on our dataset indicated that the 

proposed network achieved better performance compared to other networks. 
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1. Introduction 

High myopia is a major cause of visual impairment and has rapidly increased in prevalence 

over the past 50 years. Preliminary projections based on prevalence data and the 

corresponding United Nations population figures indicate that myopia and high myopia will 

affect 52% and 10% of the world’s population by 2050 respectively [1]. In patients with 

myopia, 10% develop myopia macular degeneration (MMD), which is the most common 

cause of visual impairment [2]. Linear lesions are main signs of MMD and important 

indicators of the progress of high myopia.  

Lacquer cracks and myopic stretch lines are two main types of linear lesions in 

pathological myopic eyes [3]. Lacquer cracks, having the prevalence of 4.3%-9.2% in highly 

myopic eyes [4,5], are believed to be breaks in the Bruch membrane-retinal pigment 

epithelium (RPE)-choriocapillaris complex owing to excessive axial elongation [6,7]. Myopic 

stretch lines are considered to be the precursors of lacquer cracks [8].  

Patients with linear lesions are at high risk of visual impairment because linear lesions 

may lead to further adverse changes in the fundus, such as patchy chorioretinal atrophy, 

myopic choroidal neovascularization (CNV), and macular hemorrhage [9]. Linear lesion also 

reflects the progress of staphyloma. Therefore, automatic segmentation of linear lesions can 

provide vital information for diagnosis, follow-up examinations and quantitative analysis for 

patients with high myopia. 
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Indocyanine green angiography (ICGA) has been used for visualizing linear lesions in 

high myopia and is thought to be superior to fluorescein angiography (FA) [10-12]. As shown 

in Fig. 1, linear lesions are revealed as hypofluorescent structures in the late-phase ICGA 

images (indicated by red arrows). Although ICGA images can present linear lesions more 

clearly than other image modalities, linear lesion segmentation is still challenging because of 

the following two reasons: (1) The shape of linear lesions is quite complex, including linear, 

stellate, branching and crisscrossing structures. There is no fixed structure for linear lesions. 

(2) Linear lesions share the same characteristics with retinal vessels in both spatial structures 

and gray levels. 

   

Fig. 1. Linear lesions in ICGA. 

Deep convolution neural networks (DCNNs) has been proved to be efficient for image 

processing including image classification [13,14], image segmentation [15] and object 

detection [16]. It has achieved success in retinal vessel segmentation, which is somewhat 

similar to the linear lesion segmentation. Liskowski et al. [17] proposed a deep neural 

network model to detect retinal vessels in fundus images. The approach outperformed 

previous vessel segmentation methods on accuracy of classification and area under the ROC 

curve. Later, Wu et al. [18] proposed a DCNN architecture under a probabilistic tracking 

framework to extract retinal vessel tree. Fu et al. [19] formulated the vessel segmentation as a 

boundary detection problem using fully connected CNN model. However, there are few 

studies on linear lesion segmentation. To our best knowledge, we are the first to apply 

DCNNs to automatically segment linear lesions. In our previous work [20], a conditional 

generative adversarial network (cGAN) based method was proposed which achieved 

reasonable performance. In this paper, a new partial densely connected network is proposed 

to further improve the segmentation performance. Dice loss and weighted binary cross-

entropy loss are added to overcome the data imbalance problem. The contributions of our 

work are listed as follows: 

-We are the first to introduce and improve cGANs for the task of linear lesion 

segmentation. The result is the best among other compared methods. 

-A new partial densely connected network is proposed as the generator of cGANs that 

tries to encourage the reuse of the features. 

-Dice loss and weighted binary cross-entropy loss are added in the loss function to deal 

with the data imbalance problem. 

-The problem is formulated as a three-class segmentation task, so that the network can be 

trained to learn the differences between linear lesions and retinal vessels. 

The rest of the paper is organized as follows. In Section 2, the proposed method is 

described in detail. In Section 3, the experimental results are given and compared with other 

methods. In Section 4, conclusions and discussions are presented. 

 

 



2. Methods 

2.1 Conditional generative adversarial networks 
GANs and its variations [21,22] have been widely studied in the last four years and have 

achieved success in many image processing applications, such as inpainting [23], future state 

prediction [24], image manipulation [25,26] and style transfer [27]. Just as GANs learn a 

generative model of data, cGANs learn a conditional generative model, where the output 

image is conditioned on an input image. This makes cGANs suitable for image-to-image 

translation tasks especially for image segmentation. Based on the conditional information, 

cGANs can generate images with high quality.  

Fig. 2 shows the flowchart of the proposed method. In the training stage, the input image 

and the ground truth are combined in pairs and sent to cGANs to train both the generator and 

discriminator. ICGA images in the dataset are annotated with three class labels: backgrounds, 

linear lesions and retinal vessels. Since the original two-class segmentation of linear lesions 

usually segment the retinal vessels as linear lesions, the three-class segmentation can train the 

networks to learn the differences between linear lesions and retinal vessels and increase the 

accuracy of segmentation. In the test stage, the generator can generate the three-class 

segmentation results according to the input images. Finally, retinal vessels and background 

are combined as the background in the binary segmentation results. 

 

 

Fig. 2. Flowchart of the proposed method. 

 

cGANs consist of a generator and a discriminator. During the training process, the 

generator captures the data distribution and the discriminator estimates the probability that the 

image comes from the training data rather than the generator. The discriminator learns a loss 

that tries to detect whether the output image is real or fake while the generator is trained 

simultaneously.  

cGANs learn a mapping from the input image x  and the random noise vector z  to the 

output image y . The loss function of cGANs can be expressed as follows: 

, ( , ) ( ), ( )( , ) [log ( , )] [log(1 ( , ( , )))]
data data zcGAN x y p x y x p x z p zL G D E D x y E D x G x z= + −     (1) 



During iterations, the generator is trained to minimize log(1 ( , ( , )))D x G x z−  while the 

discriminator is trained to maximize log ( , )D x y , following the min-max optimization rule: 

arg min max ( , )cGAN
G D

G L G D

=                                              (2) 

 

2.2 Partial dense connections in generator 

The encoder-decoder model [28,29] has been shown to be one of the most efficient network 

architectures to complete image segmentation tasks. U-Net [30], one of the typical encoder-

decoder networks, is the most common network architecture adopted in generator. The 

encoder can gradually reduce the spatial dimension of feature maps and capture the long-

range information while the decoder can recover object details and spatial dimension. Skip 

connections are added from the encoder features to the corresponding decoder activations to 

help decoder layers assemble a more precise output based on features from encoder layers.  

However, the original U-Net has poor performance on linear lesion segmentation reported 

in our previous work [20], because linear lesions and other structures such as retinal vessels 

are too similar to be distinguished by the network. In the proposed method, partial dense 

connections are introduced into the U-Net structure in the generator.  

Dense connections are first proposed in densely connected convolutional networks 

(DenseNets) [31], which is the improved network of ResNets [13]. DenseNets obtain 

significant improvements over the state-of-the-art on most datasets. According to [31,32], 

DenseNets can drastically reduce the vanishing of gradient because features are reused by 

creating short paths from early layers to later layers. DenseNets allow layers to access feature 

maps from all of its preceding layers. As an improvement to DenseNet, TiramisuNet [33] 

extends the DenseNet architecture to fully convolutional networks for semantic segmentation, 

while mitigating the feature map explosion. It can complete semantic segmentation efficiently 

and achieve state-of-the-art results on urban scene benchmark datasets. 

Experiments have shown that although the final classification layer uses weights across 

the entire dense block, there seems to be a concentration towards final feature-maps, 

suggesting the adjacent layers might contribute most to the final feature maps [31]. Thus, 

partial dense connections are proposed and applied on the generator of cGAN in our method. 

Compared with the original dense connections, long range connections are removed to reduce 

the training time and increase the computation efficiency, while short range connections are 

kept to encourage the reuse of the features. By adding partial dense connections, the network 

can learn the differences between object and background in a relatively short time. The 

proposed partial dense connections are illustrated in Fig. 3, where each layer makes use of 

feature maps produced by the previous two layers. The output of the 
th

i  layer 
ix  is denoted 

as follows:  

1 2([ , ])i i i ix H x x− −=                                                       (3) 

where ( )iH   represents the non-linear transformation in the 
th

i  layer, including batch 

normalization, rectified linear units, pooling or convolution. As each layer has different 

feature resolutions, we down-sample the feature maps with higher resolutions or up-sample 

the feature maps with lower resolutions before the partial dense connections. 



 

Fig. 3. Example of the proposed partial dense connections. 

 

Finally, the encoder-decoder architecture with partial dense connections is used in the 

generator as shown in Fig. 4. The skip connections share the information between encoders 

and decoders to make the output much more reasonable. Partial dense connections encourage 

the reuse of the feature maps so that networks can distinguish the features of linear lesions 

from those of retinal vessels. Meanwhile, partial densely connected networks have fewer 

computations than fully densely connected networks. It can finish the training process in a 

much shorter time. 

 

Fig. 4. Architecture of generator. 

 

2.3 PatchGAN in discriminator 

PatchGAN [22] is employed in the discriminator as shown in Fig. 5. Traditional discriminator 

in cGANs for image segmentation outputs a single number between 0 to 1 to represent the 

probability that the output image is real or fake. In contrast, patchGAN tries to classify if each 

N N  patch in the output image is real or fake. We run this discriminator across the whole 

output image convolutionally and average all responses to fetch the ultimate discrimination of 

the output image. As shown in Fig. 5, each pixel in the final layer reflects the possibility of 

the corresponding 70 70  patch in the input images. 

By running patchGAN, the size of patches can be much smaller than the full size of the 

image and it has fewer parameters than the original discriminator. Therefore, it can be applied 

on arbitrary size images with higher computational efficiency. 

 

Fig. 5. Architecture of discriminator. 

 

 



2.4 Improved loss function 

Previous improvement approaches [22,23] for cGANs have found it beneficial to mix cGAN 

loss with a traditional loss, such as L1 loss. By adding L1 loss, the discriminator’s task 

remains unchanged, but the generator is tasked to produce not only undistinguishable images 

but also images much more similar to the ground truth. We also adopt the following L1 loss 

in the proposed method: 

11 , ( , ), ( )
( ) [ ( , ) ]

L x y p x y z p zdata z
L G E y G x z= −                               (4) 

To improve the segmentation performance of our proposed networks, the Dice loss [34] 

and the weighted binary cross-entropy loss are also added in the final loss function.  

In ICGA images, linear lesions usually occupy a relatively small part of the whole image. 

The imbalance between the pixel number of background and object often causes the training 

process to get trapped in a local minimum of the final loss function. The networks usually 

produce predictions which are biased to backgrounds. To solve the data imbalance problem, 

the Dice loss function is added as follows: 

2 2 ( , )
[1 ], ( , ), ( ) 2 2( , )0

( )Dice

y G x zi iw Ei x y p x y z p zdata z
y G x zi i i

L G  −
+=

=                        (5) 

where iy  and ( , )iG x z  respectively represent the 
th

i  channel of the ground truth and the 

prediction, and iw  denotes the weight of the Dice loss from the 
th

i  channel. Different 

weights are allocated to the Dice loss from different channels so that the networks can finally 

achieve the better linear lesion segmentation. 

Although the Dice loss can drastically reduce the data imbalance problem, it still has 

some limits on the predictions of single pixels. In this paper, the weighted binary cross-

entropy loss is added in the final loss function. The Dice loss cares about the intersection area 

of predictions and the ground truth, while the weighted binary cross-entropy treats the 

segmentation problem as pixel-wise classification and tries to increase the accuracy of pixel-

wise classification for each class. It can not only highlight the area of linear lesions 

effectively to enhance the structural information but also balance the gradients of areas in 

different classes during training. The weighted binary cross-entropy loss is defined as follows: 

2

, ( , ), ( )
0

( ) [ ( log ( , ) ) ( log(1 ( , ) ))]
data zx y p x y z p z i i iwBCE i i i

i

L G E w y G x z w y G x z
−+

=

= − − −     (6) 

The total weighted binary cross-entropy is the sum of weighted binary cross entropy 

calculated in each class. ( , )iG x z  and iy  represent the prediction and the ground truth of the 

th
i  class, respectively. iw

+
 and iw

−
 denote the ratio of object and background.  

 The final improved loss function is: 

1 1 2 3arg min max ( , ) ( ) ( ) ( )cGAN L Dice wBCE
G D

Loss L G D L G L G L G  = + + +          (7) 

 

 

 

 

 

 

 

 



3. Experiments and results 

3.1 Dataset 

The medical records and ICGA database of Shanghai General Hospital from April 2017 to 

August 2017 were searched and reviewed. Totally 76 eyes with linear lesions from 38 

subjects were included and imaged (indocyanine green as fluorescer, Heidelberg Retina 

Angiography 2, Heidelberg Engineering, Heidelberg, Germany, 768×768 pixels). The 

collection and analysis of image data were approved by the Institutional Review Board of 

Shanghai General Hospital and adhered to the tenets of the Declaration of Helsinki. An 

informed consent was obtained from each subject to perform all the imaging procedures. 

Previous studies [3] show that lacquer cracks are hypofluorescent in the late ICGA phase, 

which is 15 minutes after ICG dye injection. In our experiments, images were fetched 30 

minutes after injection to ensure linear lesions were clear. Due to the small number of 

subjects, 2 images from each eye are used in the dataset. These 2 images have slight 

differences in the position and intensity because of the different imaging time. Therefore, 

each subject has 4 images and a total of 152 ICGA images are included in the dataset. We 

randomly split the dataset into 4 parts, which contains images from 10, 10, 9 and 9 subjects, 

for the four-fold cross validation. As shown in Fig. 6, each image in the dataset is annotated 

pixel-wise with three class labels, namely background, linear lesions and retinal vessels.  

 

Fig. 6. Example of ICGA image dataset. (a) An original ICGA image. (b) The annotation of 
the ICGA image (a). Red regions present the background. Green regions indicate linear lesions 

and blue regions indicate retinal vessels. 

3.2 Evaluation metrics 

As each evaluation metric has its own bias toward the specific properties of the segmentation, 

multiple metrics should be covered to achieve the overall evaluation for the segmentation. To 

make the results clear and quantitative, we adopt metrics in Table 1 to evaluate our 

segmentation. 

 
Table 1. Evaluation metrics adopted in the experiments 

IoU TP/(TP+FP+FN) 

DSC 2TP/(2TP+FP+FN) 

Accuracy (TP+TN)/(TP+FP+TN+FN) 

Sensitivity TP/(TP+FN) 

Specificity TN/(FP+TN) 

(IoU: Intersection over union; DSC: Dice similarity coefficient; 

TP: True positive; FP: False positive; TN: True negative; FN: False negative) 

Since the linear lesions are our final segmentation object, retinal vessels and background 

in the three-class segmentation results are combined as the background in the final binary 

images. Intersection over union (IoU), also known as Jaccard index, is the main metric which 



measures the overlap between the ground truth and segmentation results [15]. Dice similarity 

coefficient (DSC) can also be used for comparing the similarity between the ground truth and 

results [35,36]. Accuracy is another common metric, representing a ratio between the amount 

of properly segmented pixels to the total pixel number [37]. Furthermore, because the 

automatic linear lesion segmentation is used to assist doctors in diagnosis and analysis of high 

myopia, sensitivity and specificity are also included [38]. 

 

3.3 Comparison of model variations 

In this section we investigate the effect of the partial densely connections and the 

improvement of the loss function including Dice loss and weighted binary cross-entropy loss.  

 

Fig. 7. Segmentation results by model variations. Green regions present the segmentation 

results and blue regions present the ground truth. Red regions indicate the intersection between 

the ground truth and segmentation results. (a) Results of cGAN. (b) Results of cGAN+Dice. (c) 
Results of cGAN+wBCE. (d) Results of cGAN+Dice+wBCE. (e) Results of cGAN+partial 

dense connections. (f) Results of the proposed networks. (Dice: Dice loss; wBCE: weighted 

binary cross-entropy loss) 

 

As shown in Fig. 7 and Table 2, the original cGAN method cannot learn the differences 

between linear lesions and retinal vessels. Partial dense connections and the improved loss 

function drastically improve the performance of segmentation. Compared with the traditional 

U-Net generator, generator with partial dense connections encourages the feature reuse during 

the training process. It can easily capture the main features of linear lesions and learn the 

differences between linear lesions and retinal vessels. Partial dense connections can also 

retain the full structure of linear lesions and present more details. Additionally, the Dice loss 

and the weighted binary cross-entropy loss can solve the data imbalance problem to a great 

extent, since linear lesions are always slim and only occupy a small part of the image. The 

improved loss function can avoid the bias to background effectively. 



Table 2. Segmentation results of comparison experiments on model variations, measured with mean and 

standard deviation. 

Methods IoU(%) DSC(%) Accuracy(%) Sensitivity (%) Specificity (%) 

cGAN 36.53  6.38 52.82  7.10 98.44  0.22 58.91  6.73 99.16  0.10 

cGAN+Dice [20] 37.44  5.48 53.97  5.93 98.52  0.33 55.80  7.02 99.28  0.24 

cGAN+wBCE 38.71  5.25 55.52  5.50 98.20  0.35 70.98  8.78 98.70  0.35 

cGAN+Dice+wBCE 42.61  5.13 59.24  5.19 98.58  0.32 67.16  8.76 99.16  0.26 

cGAN+PDC 40.70  2.67 57.61  2.74 98.52  0.42 63.29  8.14 99.16  0.30 

cGAN+PDC+Dice+wBCE 52.95  1.22 69.21  1.04 98.92  0.34 77.63  2.23 99.29  0.26 

 (Dice: Dice loss; wBCE: weighted binary cross-entropy loss; PDC: partial dense connections) 

 

3.4 Comparison to other deep learning networks 

To evaluate the performance of our method objectively, the proposed method is compared 

with several popular deep learning networks. As shown in Fig. 8 and Table 3, the proposed 

method obtains the best performance according to all evaluation metrics. Compared to other 

deep learning networks, it is clear that the adversarial mechanism in cGAN has remarkable 

performance in linear lesion segmentation. U-Net with partial dense connections are added in 

the comparison. As we can see, it performs better than original U-Net, PSPNet and 

TiramisuNet, which not only indicates that the U-Net with partial dense connections can 

improve the performance of generator, but also represents the proposed method is good at 

linear lesion segmentation even without cGAN mechanism. 

We also infer that the Dice loss and the weighted binary cross-entropy loss play a big role 

in achieving the good results, because other networks such as PSPNet and TiramisuNet, 

designed for natural object segmentation, only use the cross-entropy loss. To make the 

networks suitable for medical image segmentation, loss functions should be improved to 

correspond to the object since each part of the loss function has different bias to drive the 

prediction. Exploring the appropriate loss functions is very important to achieve good 

segmentations in ICGA images. 

Table 3. Segmentation results of comparison experiments on other deep networks, measured with mean and 

standard deviation. 

Methods IoU(%) DSC(%) Accuracy(%) Sensitivity(%) Specificity(%) 

U-Net [30] 12.98  3.53 22.80  5.68 95.04  0.82 30.50  9.69 96.64  0.93 

PSPNet [39] 35.98  5.44 52.69  5.86 97.80  0.27 51.42  9.68 98.96  0.20 

TiramisuNet [33] 42.15  4.92 59.14  4.84 98.08  0.34 57.44  6.89 99.09  0.25 

U-Net+PDC 42.32  3.04 59.41  2.97 98.29  0.23 55.59  8.27 99.29  0.16 

Proposed  52.95  1.22 69.21  1.04 98.92  0.34 77.63  2.23 99.29  0.26 

(PDC: partial dense connections) 

 



 

Fig. 8. Segmentation results on other deep networks. Green regions present the segmentation 

results and blue regions present the ground truth. Red regions indicate the intersection between 
the ground truth and segmentation results. (a) Results of U-Net. (b) Results of PSPNet. (c) 

Results of TiramisuNet. (d) Results of U-Net+partial dense connections. (e) Results of the 

proposed method.  

 

4. Conclusions and discussions 

With the increasing prevalence of myopia, high myopia has become a main vision-threat. 

Since the development of linear lesions can reflect the severity of high myopia, it is important 

and meaningful to achieve automatic linear lesion segmentation. This paper has proposed an 

improved cGAN framework to segment linear lesions in ICGA images. On one hand, partial 

dense connections are added in the generator to emphasis feature reuse and to allow the 

network to better learn the differences between object and background. On the other hand, the 

final loss function is improved with the Dice loss and the weighted binary cross-entropy loss. 

They both help to avoid the drastic reductions in accuracy due to the data imbalance problem. 

Moreover, binary cross-entropy loss helps to classify pixels on the edge of object much more 

precisely. The proposed networks improved with partial dense connections and additional 

loss functions can effectively solve the linear lesion segmentation problem. Compared with 

other popular deep learning networks for image segmentation, our method achieves the better 

results. 

Considering the low image quality, it is difficult to capture the features of linear lesions 

only via image intensity in ICGA images. Even the ground truth may not be 100% correct. 

Most diagnosis from experts are based on abundant experiences, which is hard for the 



networks to learn and conclude. This may explain the low IoU ratios of all methods in our 

comparison. 

In the future work, the segmentation performance can be improved from the following 

two aspects. First, the dataset we used is quite small, which contains only 152 images. We 

will enlarge the ICGA dataset to make the network more generalized. Data augmentation can 

be an efficient way to increase the size of dataset and reduce the over-fitting problem. On the 

other hand, the data imbalance between object and background still affects the accuracy of 

segmentation, though Dice loss and weighted binary cross-entropy loss are added to the loss 

function. Linear lesions are so small that it is difficult for the network to learn the overall 

structure and shape of the linear lesions. Thus, small errors in the results may lead to 

drastically reduction in the IoU ratio. To overcome this problem, we will cut the input images 

into small patches and only keep the patches with the object in the training stage so that the 

network can fully learn the features of linear lesions. 
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